You are here

Diversity of copy number variation in the worldwide goat population.

TitleDiversity of copy number variation in the worldwide goat population.
Publication TypeJournal Article
Year of Publication2019
AuthorsLiu, M, Zhou, Y, Rosen, BD, Van Tassell, CP, Stella, A, Tosser-Klopp, G, Rupp, R, Palhière, I, Colli, L, Sayre, B, Crepaldi, P, Fang, L, Mészáros, G, Chen, H, Liu, GE
Corporate AuthorsAdaptMap consortium
JournalHeredity (Edinb)
Volume122
Issue5
Pagination636-646
Date Published2019 May
ISSN1365-2540
Abstract

Goats (Capra hircus) are an important farm animal species. Copy number variation (CNV) represents a major source of genomic structural variation. We investigated the diversity of CNV distribution in goats using CaprineSNP50 genotyping data generated by the ADAPTmap Project. We identified 6286 putative CNVs in 1023 samples from 50 goat breeds using PennCNV. These CNVs were merged into 978 CNV regions, spanning ~262 Mb of total length and corresponding to ~8.96% of the goat genome. We then divided the samples into six subgroups per geographic distribution and constructed a comparative CNV map. Our results revealed a population differentiation in CNV across different geographical areas, including Western Asia, Eastern Mediterranean, Alpine & Northern Europe, Madagascar, Northwestern Africa, and Southeastern Africa groups. The results of a cluster heatmap analysis based on the CNV count per individual across different groups was generally consistent with the one generated from the SNP data, likely reflecting the population history of different goat breeds. We sought to determine the gene content of these CNV events and found several important CNV-overlapping genes (e.g. EDNRA, ADAMTS20, ASIP, KDM5B, ADAM8, DGAT1, CHRNB1, CLCN7, and EXOSC4), which are involved in local adaptations such as coat color, muscle development, metabolic processes, osteopetrosis, and embryonic development. Therefore, this research generated an extensive CNV map in the worldwide population of goat, which offers novel insight into the goat genome and its functional annotation.

DOI10.1038/s41437-018-0150-6
Alternate JournalHeredity (Edinb)
PubMed ID30401973
PubMed Central IDPMC6462038