Mapping and expression analyses during porcine foetal muscle development of 12 genes involved in histone modifications

TitleMapping and expression analyses during porcine foetal muscle development of 12 genes involved in histone modifications
Publication TypeJournal Article
Year of Publication2009
AuthorsPeng, YB, Yerle, M, Liu, B
JournalAnim Genet
Volume40
Pagination242-6
KeywordsAnimals Chromosome Mapping Female Fetal Development Gene Expression Regulation, Developmental Histones Muscle, Messenger Radiation Hybrid Mapping Sus scrofa, Skeletal Polymerase Chain Reaction Pregnancy RNA
Abstract

Histone modifications (methylation and demethylation) regulate gene expression and play a role in cell proliferation and differentiation by their actions on chromatin structure. In this context, we studied the temporal expression profiles of genes acting on histone methylation and demethylation during skeletal muscle proliferation and differentiation. Quantitative real-time PCR was used to quantify the mRNA levels of CARM1, JARID1A, JMJD2A, LSD1, PRMT2, PRMT5, SMYD1, SMYD2, SMYD3, SETDB1, Suv39h2 and SUZ12 in foetal skeletal muscle. Our results showed that CARM1, JARID1A, JMJD2A, SMYD1 and SMYD2 were differentially expressed in embryonic muscles of 33 days post-conception (dpc), 65 dpc and 90 dpc. These 12 genes were mapped to porcine chromosomes (SSC) 2q21-24, 5q25, 6q35, 6q12-21, 6p15, 7q21, 3q21-27, 9q26, 10p16, 4q15-16, 10q14-16 and 12p12 respectively. Taking into account the reported QTL mapping results, gene expression analysis and radiation hybrid mapping results, these results suggest that five genes (CARM1, JARID1A, JMJD2A, SMYD1 and SMYD2) could be good candidate genes for growth and backfat thickness traits.

cytogene